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Abstract

Biomarkers that can be used in combination with established screening tests to reduce false positive

rates are in considerable demand. In this article, we present methods for evaluating the diagnostic perfor-

mance of combination tests that require positivity on a biomarker test in addition to a standard screening

test. These methods rely on relative true- and false-positive rates to measure the loss in sensitivity and

gain in specificity associated with the combination relative to the standard test. Inference about the

relative rates follows from noting their interpretation as conditional probabilities. These methods are

extended to evaluate combinations with continuous biomarker tests by introducing a new statistical

entity, the relative receiver operating characteristic (rROC) curve. The rROC curve plots the relative

true positive rate versus the relative false positive rate as the biomarker threshold for positivity varies.

Inference can be made by applying existing ROC methodology. We illustrate the methods with two

examples: a breast cancer biomarker study proposed by the Early Detection Research Network (EDRN)

and a prostate cancer case-control study examining the ability of free prostate-specific antigen (PSA) to

improve the specificity of the standard PSA test.
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1. Introduction

The development of screening tests that are both highly sensitive and highly specific has been a re-

search priority for many years. However, optimizing both sensitivity and specificity with a single marker

or test is not always possible. In cancer detection, several established tests have high sensitivity, butyield
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a large number of false positives. For example, the false positive rate associated with mammography is at

least 6% percent (Kerlikowske et al. 1993), putting a woman at a 50% risk of at least one false positive

after 10 screening mammograms (Elmore et al. 1998). As another example, the PSA test is known to

have low specificity in men with benign disease; only about one in three positive PSA tests will be a true

positive, with that number dropping to one in four for men with a PSA level between 4 and 10 ng/mL

(Brawer 1999). Given the large number of healthy people involved in cancer screening, there are huge

physical, emotional, and financial costs associated with false positive results and consequent unnecessary

work-up procedures (Elmore et al. 1998; Lafata et al. 2004). In the rare disease setting, specificity needs

to be extremely high in order for a test to be of practical use in population screening. For instance, if a

screening test detected ovarian cancer, which has an incidence rate of 13.7/100,000 (Ries et al. 2006),

with 90% sensitivity and 99% specificity, only about 1 in 100 positive tests would be true positives. New

technologies promise to yield biomarkers that will assist in screening and diagnosis. Combining existing

tests with these new technologies has become a natural step toward improving the accuracy of screening

tests.

A standard approach to improve the diagnostic performance of a sensitive but nonspecific diagnostic

test is to require a positive result on a second test, using the “believe-the-negative” rule (Marshall 1989).

For example, the Early Detection Research Network (EDRN) is constructing a set of serum samples for

evaluating candidate biomarkers for breast cancer that could be used to reduce the false positive rate

associated with mammography (Srivastava and Kramer 2000). Similarly, there have been several attempts

to improve the specificity of PSA by requiring a positive result on a second marker, such as free PSA, PSA

velocity, or PSA density (Catalona et al. 1998, 1995; Partin et al. 1996; Raaijmakers et al. 2004; Gann

et al. 2002). The more stringent criterion for positivity is useful if the false positives are substantially

reduced without sacrificing the number of diseased subjects detected. Indeed, many studies examining the

value of free PSA have cited unnecessary biopsies avoided (reduction in the false positive rate) versus the

proportion of cancers detected (preservation of the true positive rate) as measures of diagnostic benefit

associated with the use of information on free in addition to total PSA.

Evaluation of combination tests is often complicated by design limitations. Procedures to verify pres-

ence of disease, such as biopsy for detecting cancer or angiography for assessing the extent of coronary

artery disease, can be costly and invasive. When a sensitive screening test exists in standard clinical prac-

tice, invasive procedures for individuals that test negative with the standard screen cannot be ethically

justified. Thus, disease verification is obtained only on positive screenees. This design is also typically

the only one possible for retrospective studies that have biopsy-confirmed disease status only on those

who screened positive with the standard test during a previous trial, but where the innovative test can be

performed on banked tissue or serum. In this setting, a common design is to test an innovative marker

only on those subjects who tested positive with the standard screen for which disease status is known.

The design for these screen-positive studies limits the sorts of comparative metrics that can be investi-

gated because some diseased subjects are not identified, namely those testing negative with the standard
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test. For example, the absolute difference of true or false positive fractions cannot be evaluated, nor can

their odds ratios.Schatzkin et al.(1987) showed that the accuracy of two binary tests can be compared

using relative measures, that is, ratios of true positive rates and false positive rates, when disease status

is verified for subjects with at least one of the tests positive. This method can be adapted to our setting

where the marker is only obtained on positive screenees, as the “and-combination” test result is known

without performing the marker test on subjects for whom the standard screen is negative. The methods of

Schatzkin et al.(1987) were developed further byCheng and Macaluso(1997) who provided an approach

for interval estimation andPepe and Alonzo(2001) who developed a regression framework for the relative

rates. While methods of inference for the discrete case, the combination of two binary tests, have been

established, methods for the continuous case have not.

In this article, we present statistical methods for evaluating the diagnostic performance of the combi-

nation of a standard test with a continuous marker when disease status and the marker are obtained only

on subjects who screen positive with the standard assessment. In particular, we develop formal methods of

inference for this setting. We first show that for the discrete case, the relative rates proposed by Schatzkin

et al. (1987) reduce to conditional probabilities and that standard binomial formulas apply. This observa-

tion allows us to develop a natural extension of the relative rates for the case when the innovative test is

a continuous-valued biomarker. For the continuous case, we introduce the concept of the relative receiver

operating characteristic (rROC) curve. The proposed rROC curve describes the relative accuracy of the

innovative combination compared to the standard test in the general population. We note that for the “and

combination,” that is, the “believe-the-negative” rule, the rROC curve can be interpreted as the ROC curve

(Green and Swets 1966; Hanley 1989) for the innovative test in the test-positive population. We exploit

this relationship to develop methodology for statistical inference and study design.

Our analysis differs from previous studies. First, we develop the rROC to compare the performance

of a combination test relative to the standard in the general population. Furthermore, using statistical

methods for ROC curves, we develop proper inference for the rROC that takes into account the uncertainty

in both dimensions, namely the relative true positive fraction (rTPF) and the relative false positive fraction

(rFPF). Previous studies that used a biomarker to improve the specificity of an existing screening test did

not account for the uncertainty in the threshold estimate when presenting estimates of the percent biopsies

avoided for a fixed fraction of cancers detected (Catalona et al. 1995, 1998; Partin et al. 1996; Gann et al.

2002). The methods we present provide a formal statistical framework for making inferences about these

clinically relevant quantities, which was not present in these previous studies.

The article is organized as follows. In Section 2, we presents a representation of the relative rates in

terms of conditional probability when both tests are binary. For illustration, we consider an example from

the EDRN for breast cancer. In Section 3, we introduce the concept of the rROC curve and use this to

extend the methods of Section 2 to accommodate settings where the second test is a continuous marker

rather than a dichotomous test. Data from a study that examined the ability of the free PSA biomarker

to improve the specificity of the standard PSA test for prostate cancer are then analyzed using the rROC
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technology. We conclude with a summary and discussion of the applicability of the proposed methods in

the broader context of diagnostic testing and screening.

2. Performance of a Combination Test using a Dichotomous Biomarker

2.1 Relative Accuracy

The diagnostic accuracy of a test is typically summarized with the true positive rate (TPR) and the

false positive rate (FPR). The TPR and FPR, also known as the sensitivity and 1− specificity, are:

TPR= P(test positive| diseased) and FPR= P(test positive| non-diseased).

One way to compare the combined testA and Bwith test A is to compute the relative true and false

positive rates, given by

rTPR =
P(YA = + andYB = +|D)

P(YA = +|D)
(1)

and

rFPR =
P(YA = + andYB = +|D̄)

P(YA = +|D̄)
, (2)

whereD denotes disease present by the definitive test,D̄ denotes its absence, andYA andYB denotes the

results of testsA and B. The hope is that rTPR will be close to 1, while rFPR will be substantially less

than 1; that is, by combining testB with test A, sensitivity will be maintained but the false positive rate

will be reduced substantially.

Observe that these relative rates are equal to the conditional probabilities:

rTPR= P(YB = +|YA = +, D) and rFPR= P(YB = +|YA = +, D̄). (3)

Despite the design constraints, each of these probabilities is estimable. Furthermore, from (3), we see that

these relative rates are just the unconditional TPR and FPR for testB applied to the subpopulation of

subjects who tested positive on testA. From this key observation, we note that standard statistical proce-

dures for binomial probabilities can be applied to make inference about the comparative measures, rTPR

and rFPR. It should be noted that using the binomial formulas for confidence intervals will yield strictly

smaller confidence regions than the approximate method proposed byCheng and Macaluso(1997) for

rTPR and rFPR in the more general screen-positive setting. This can be shown by Taylor series methods.

The binomial formulas also provide the option of exact inference for small sample sizes.
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Table 1. Hypothetical biomarker results (YB) from 300 invasive cancers and 100 benign disease controls with positive screening
mammograms. True disease status is determined by biopsy.

DiseaseStatus

Test Result Cancer Benigndisease

YB = + 294 50
YB = − 6 50

Total 300 100

2.2 Example: the Early Detection Research Network

The Early Detection Research Network (EDRN) is constructing a set of serum samples for evaluating

candidate biomarkers for breast cancer (Srivastava and Kramer 2000). The EDRN seeks markers that will

reduce the false positive rate associated with mammography. Thus, a woman will have a positive screening

test if she tests positive with mammography (testA) and with the biomarker (testB). The proposed EDRN

study will collect serum samples from mammography positive women undergoing biopsy procedures.

Samples from 300 women found to have invasive cancer will be selected for inclusion in the reference

set along with 100 women without cancer. This study is currently underway, so data are not yet available.

Instead, Table 1 shows an illustrative, hypothetical dataset for a binary biomarker test used in combination

with mammography.

Most published studies express the value of the combination test in terms of unnecessary biopsies

avoided versus percent cancers detected. These quantities correspond exactly to 1-rFPR and rTPR. The

point estimates and joint 90% confidence intervals (Pepe 2003) for the relative rates are rTPR= 294/300=

0.98 (0.96, 0.99) and rFPR= 50/100= 0.50 (0.40, 0.60). These relative rates have two interpretations.

Interpreted as ratios of test performance measures in the general population, the combined test has 98%

of the sensitivity and 50% of the false positive rate of mammography alone. Interpreted as conditional

probabilities, using Equation (3), they show the proportions of cases and controls currently undergoing

biopsy that would still be biopsied with the requirement that they also test positive with the biomarker.

Thus, with 90% confidence, the proportion of controls unnecessarily undergoing biopsy can be reduced

by at least 40% with a loss of no more 4% of the cancers currently detected with mammography alone.

An advantage of the interpretation as relative performance of the combined test versus mammography

alone is that it does not require that mammography be performed first in the combination. That is, it

compares the test combination where the biomarker is performed first then followed by mammography

if the biomarker is positive to mammography alone. Even though the study design was not carried out in

this fashion, inference about the rTPR and rFPR for that ordering of the combination is provided. If the

“and combination” is found to perform well relative to mammography alone, it would be very desirable

to apply the biomarker first in practice rather than the mammogram, because women negative on the

biomarker would not need mammography and the cost savings could be enormous.
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3. Performance of a Combination Test Using a Continuous Biomarker

3.1 The rROC curve

For a continuous diagnostic test, a positive result is based on whether the test result exceeds a threshold

c, written asY > c. Each cutoff value yields a binary test. Suppose that testB is continuous. We can

consider rTPR(c) and rFPR(c) for the combination of testA with test B dichotomized at thresholdc

compared with testA alone. We then define the relative ROC curve, rROC= { ( rFPR(c), rTPR(c) ), c ∈

(−∞, ∞) }, as the plot of all possible relative true versus relative false positive rates. If the curve contains

points where rTPR(c) is close to 1 but corresponding rFPR(c) is substantially less than 1, this indicates

that for some thresholds the combination improves performance relative to the performance of testA

alone. Again using the conditional probability interpretations from (3), we note that the rROC curve can

also be interpreted as a true ROC curve for testB conditional on testA positivity. As with the usual ROC,

the closer the curve is to (0,1), the better the relative performance. Standard statistical procedures for

ROC curves can be applied to make inference about the comparative performance and to perform sample

size calculations. In addition, ROC regression methods can be used to evaluate the dependence of the

relative performance on covariates such as patient demographics or clinical characteristics. In the case

where multiple biomarkers are being evaluated for their performance in combination with the standard

test, regression methods may be used to compare the rROCs and the corresponding areas or partial areas

under the curves (rAUCs, rpAUCs) so as to select the marker that is most likely to improve specificity

while maintaining acceptable levels of sensitivity.

3.2 Example: Analysis of Prostate Cancer Biomarker Data

The percentage of free to total PSA (FPSA) is a continuous biomarker which has been shown to be

lower on average in men with prostate cancer compared to those without the disease (Gann et al. 2002;

Catalona et al. 1998, 1995; Partin et al. 1996). Given that the standard PSA test (PSA) may not always be

sufficiently specific, a number of studies have investigated whether FPSA can be combined with PSA to

reduce the likelihood of a false positive test.

The Physician’s Health Study (PHS) was a randomized, placebo-controlled clinical trial of beta carotene

and aspirin which enrolled 22,071 U.S. male physicians aged 40–84 years in 1982 (Hennekens and Eber-

lein 1985). A case-control study of prostate cancer biomarkers, PSA and FPSA, was conducted after the

primary study was completed (Gann et al. 2002). To this end, PSA and FPSA were obtained from stored

serum samples for 430 men who developed prostate cancer during the course of the study and 1,642

age-matched controls. Here we seek to examine the diagnostic performance of combining FPSA with the

standard PSA screening test for those who test positive on the standard. Due to the long-term follow-up of

this retrospective study, disease status was available for all subjects. The rROC curve is applicable to this

setting, as well as to the prospective setting where disease status for individuals whose total PSA does not

exceed the standard threshold of 4 ng/mL is not known.
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Figure 1. The empirical relative ROC curve (rROC) for the combined PSA and FPSA test compared with PSA alone. The point

estimate forr̂ROC
−1

(0.90) = 0.59 is marked with a solid vertical line. The 90% confidence interval for̂rROC
−1

(0.90) is also
shown.

Consider the combination PSA> 4 ng/mLand−FPSA> c. (We use−FPSA so that higher values of

YB are associated with cancer, in accordance with our convention.) In the framework we have developed,

−FPSA is testB and the standard PSA test is testA. The rTPR(c) is calculated as the proportion of

prostate cancer cases positive with the standard PSA test whose−FPSA values exceedc. Similarly, the

rFPR(c) is calculated from the PSA-positive controls. There are 147 cases and 144 controls who had serum

samples positive with the standard PSA test. Thus, 291 subjects enter into the calculation of rROC(c).

The empirical rROC curve of̂rTPR(c) versusr̂FPR(c) for all c is shown in Figure 1. This curve shows

the trade-off of the reduction in unnecessary biopsies performed, 1−rFPR, versus the reduction in cancers

detected, 1− rTPR, for the combined test relative to the standard PSA test for each cutoffc.

Suppose we seek a combined test that maintains 90% of the sensitivity of the standard PSA test. The

corresponding threshold for FPSA in our data is 21%. As shown in Figure 1, this test has an estimated

relative false positive ratêrFPR= 0.59. Recognizing the rFPR that yields a rTPR of 0.90 as the estimated

inverse ROC point,̂rROC
−1

(0.90), we can apply the variance formula 5.3 ofPepe(2003) to obtain an

appropriate confidence interval. This variance estimate incorporates the uncertainty in both dimensions

of the estimated ROC curve, that is, the rTPR and the rFPR. Applying this formula requires estimating

the slope of the rROC curve at the point where rTPR= 0.90, which we estimate by the slope of a

binormal ROC curve fit to the data (Metz et al. 1998; Dorfman and Alf 1969). This slope is calculated

by differentiating the function for the binormal curve rROC(t) = 8(a + b8−1(t)) with respect to the

relative false positive fractiont and plugging in the fitted parametersa andb. Alternatively, the variance

can be estimated using a bootstrap confidence interval (Efron and Tibshirani 1993) for r̂ROC
−1

(0.90)

with separate resampling from cases and controls. We used the ROCFIT function in the STATA software

(Version 8.0) (StataCorp 2003) to fit the binormal rROC curve. The resulting 90% confidence interval for
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Figure 2. Age-specific empirical relative ROC (rROC) curves for the combined PSA and FPSA test compared with PSA alone. A

90% confidence interval for̂rROC
−1

(0.90) is also shown for the age-specific groups.

the rFPR is (0.49, 0.69). That is, with 90% confidence the combination test reduces the false positive rate

of PSA by at least 31% while maintaining 90% of the sensitivity.

An important aspect of the effort to improve the specificity of PSA is the reduction of the false positive

rate in older men. To examine whether the relative performance of the combination test is a function of

age, rROC curves for men 65 and older(N = 138) and under age 65(N = 153) are calculated along with

their corresponding rAUCs. The estimates for the rAUC and its standard error are based on the binormal

model fit to the data with ROCFIT in STATA. Figure 2 displays the age-specific rROC curves along with

the pooled rROC. The relative performance for the two age groups is remarkably different. The area under

the rROC curve along with the 90% confidence intervals is 0.83 (0.77, 0.89) for older men and 0.72 (0.65,

0.79) for the younger men. Again, fixing the rTPR at 0.90, one has a rFPR of 0.45 (90% CI: 0.29, 0.61)

for the 65 and older group, and 0.79 (90% CI: 0.64, 0.94) for the under 65 group. Thus, the combined test

for the older men has 55% fewer false positives than PSA alone and this is significantly better than the

21% reduction seen for men under 65(p = 0.01).

The methods developed in this article extend to other settings where the combination is not a simple

“and” rule. They apply to any combination rule that yields a test more restrictive than the standard diag-

nostic test. For example, one might require a positive result on a second test only for a restricted range of

values for the first test. In the following example, we demonstrate the applicability of our methods for this

restricted range combination using the PHS data.

3.3 Example: Restricted Range Combination

For prostate cancer screening, there have been several attempts in the literature to reduce the false

positive rate of PSA by combining it with FPSA when PSA falls into the diagnostic gray zone of 4–10
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ng/mL (Catalona et al. 1998, 1995; Partin et al. 1996). Consider the combination test where we define as

positive:

+ ≡ { PSA> 10 or( 4 ≤ PSA≤ 10 and − FPSA> c ) }. (4)

The rROC curve to compare the accuracy of this test with the standard PSA test, that is, total PSA> 4

ng/mL, is calculated with the conditional probabilities:

rTPR(c) = P(PSA> 10 or (4 ≤ PSA≤ 10 and − FPSA> c)|PSA> 4, D)

= ρ1 + P(−FPSA> c | 4 ≤ PSA≤ 10, D) × (1 − ρ1)

and

rFPR(c) = ρ0 + P(−FPSA> c | 4 ≤ PSA≤ 10, D̄) × (1 − ρ0),

whereρ0 = P(PSA > 10|PSA > 4, D̄) andρ1 = P(PSA > 10|PSA > 4, D). Estimates ofρ0 andρ1

can be obtained from the PHS data as 0.15 and 0.33, respectively, and are consistent with those observed

in the literature data (Mettlin et al. 1996). The rROC curve along with the 90% confidence interval for

r̂ROC
−1

(0.90) is shown for the restricted range combination in Figure 3. The variance of̂rROC
−1

(0.90)

for the restricted range combination was obtained using the bootstrap. Here, with 500 bootstrapped sam-

ples of the cases and controls, an estimate of the variance was obtained that accounted for the extra

variability introduced into the relative rates by estimatingρ0 andρ1. Note for the restricted range rule, the

rROC curve traces out the points (1, 1) to(ρ0, ρ1) as the cutoff for−FPSA increases from−∞ to ∞. The

rAUC in this case can be calculated as

rAUC = (1 − ρ0)ρ1 + (1 − ρ0)(1 − ρ1)P(−FPSAD > −FPSAD̄|4 < PSAD, PSAD̄ < 10).

From Figure 3 one can see that near the point of interest, rTPR= 0.90, the restricted range combination

has a similar rROC curve as the simple “and” rule. This suggests that the FPSA test provides most of its

added benefit when used in combination with the standard PSA test for individuals with total PSA levels

between 4–10 ng/mL.

4. Discussion

The value of ROC methodology in evaluating the accuracy of continuous markers is well recognized.

In this article we have proposed an adaptation of the ROC curve to evaluate the relative accuracy of

tests that combine a novel, continuous marker with a standard test using the “believe-the-negative” rule.

This adaptation relies on the observation that, for this comparison, the relative rates are true conditional
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Figure 3. The gray line shows the empirical rROC curve for the restricted combination, PSA combined with FPSA when 4≤

PS A ≤ 10 ng/mL, compared with PSA alone. A 90% confidence interval for̂rROC
−1

(0.90) is also shown for the restricted
combination. The rROC curve for the simple “and combination” is overlaid (black line) for comparison.

probabilities. The rROC curve, which plots the relative true positive rate against the relative false positive

rate, shows how the gain in specificity and loss in sensitivity vary with the threshold for positivity of the

novel marker. A key advantage of this approach is that it provides a summary of the relative accuracy of the

combination test in the general population while requiring disease status be ascertained only on individuals

testing positive with the standard test; therefore it can accommodate verification-biased designs. A second

advantage is that inference fully accounts for the uncertainty in both the relative true and false positive

rates.

Though the rROC curve functions as a true ROC curve, there are qualitative differences that distinguish

it from the ordinary ROC curve that need to be considered when interpreting results. In particular, the

range of relative false positive rates that are clinically useful are markedly different than those for the

non-relative rates. For instance, suppose a standard screening test has a false positive rate of 10% and that

requiring additional positivity on the biomarker test reduces the false positive rate to 5%. The rFPR in this

case is 50%. On the non-relative scale, we are focusing on the left-hand side of the ROC curve. However,

on the relative scale this improvement translates into a point in the middle of the rROC curve. In a widely

used screening test for a relatively rare disease, small reductions in the relative false positive rate, that is,

values of rFPR as high as say 80%, could translate into a large public health benefit.

In our setting, the purpose of the biomarker is to increase specificity of the standard test. It is important

to note that with the study design we have considered, one cannot make statements about the unconditional

performance of the second test or about the absolute performance of the first or combined tests. To answer

these sorts of questions, both tests under consideration, as well as the definitive test for determining disease

status, would have to be administered to at least some subjects testing negative with the standard. This

strategy is unethical if the standard test is highly sensitive and either the second test or the definitive test
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is invasive. These subjects are not included in the proposed design. The proposed design however does

provide a useful framework to study the potential incremental value of a biomarker over a standard test in

the early stages of development with little patient burden.

One practical limitation relevant to the proposed design, as well as to all screening studies for rare

diseases such as cancer, is sample size. In order to obtain an adequate number of truly diseased subjects to

estimate the rTPR, a potentially large number of individuals would need to be screened. However, because

disease status will be obtained for individuals who test positive on the standard screening test, case-based

sampling is appropriate and can be used to avoid testing the biomarker on an unnecessarily large number

of screen-positive individuals without disease.

In summary, we have provided methodology to formally evaluate tests that combine a standard test

with a novel, continuous biomarker. This methodology applies to any combination rule that yields a test

more restrictive than the standard diagnostic test. Our framework for evaluation is based on established

ROC methodology and coincides with intuitive notions, such as unnecessary biopsies avoided and frac-

tion of cancers detected, that have been used in the literature. The proposed methods are applicable in the

setting where disease verification is burdensome or unethical in subjects testing negative with the standard

test. We anticipate that these methods will be useful in practice and will provide a clinically meaningful

way of making inferences about how best to use novel markers to improve test specificity while maintain-

ing acceptable levels of sensitivity.
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